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A quaternion is a four-dimensional complex number that can be used to represent the
orientation of a rigid body or coordinate frame in three-dimensional space. An arbitrary
orientation of frame B relative to frame A can be achieved through a rotation of angle θ
around an axis Ar̂ defined in frame A. This is represented graphically in figure 1 where the
mutually orthogonal unit vectors x̂A, ŷA and ẑA, and x̂B, ŷB and ẑB define the principle axis
of coordinate frames A and B respectively. The quaternion describing this orientation, ABq̂,
is defined by equation (1) where rx, ry and rz define the components of the unit vector Ar̂ in
the x, y and z axes of frame A respectively. A notation system of leading super-scripts and
sub-scripts adopted from Craig [1] is used to denote the relative frames of orientations and
vectors. A leading sub-script denotes the frame being described and a leading super-script
denotes the frame this is with reference to. For example, A

Bq̂ describes the orientation of
frame B relative to frame A and Ar̂ is a vector described in frame A. Quaternion arithmetic
often requires that a quaternion describing an orientation is first normalised. It is therefore
conventional for all quaternions describing an orientation to be of unit length.
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Figure 1: The orientation of frame B is achieved by a rotation, from alignment with frame
A, of angle θ around the axis Ar.

A
Bq̂ =

[
q0 q1 q2 q3

]
=
[
cos θ

2
−rxsin θ2 −rysin

θ
2
−rzsin θ2

]
(1)

The quaternion conjugate, denoted by ∗, can be used to swap the relative frames described
by an orientation. For example, BAq̂ is the conjugate of A

Bq̂ and describes the orientation of
frame A relative to frame B. The conjugate of ABq̂ is defined by equation (2).
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A
Bq̂

∗ = B
Aq̂ =

[
q0 −q1 −q2 −q3

]
(2)

The quaternion product, denoted by ⊗, can be used to define compound orientations.
For example, for two orientations described by A

Bq̂ and B
C q̂, the compounded orientation A

C q̂
can be defined by equation (3).

A
C q̂ = B

C q̂ ⊗ A
Bq̂ (3)

For two quaternions, a and b, the quaternion product can be determined using the
Hamilton rule and defined as equation (4). A quaternion product is not commutative; that
is, a⊗ b 6= b⊗ a.

a⊗ b =
[
a0 a1 a2 a3

]
⊗
[
b0 b1 b2 b3

]
=


a0b0 − a1b1 − a2b2 − a3b3
a0b1 + a1b0 + a2b3 − a3b2
a0b2 − a1b3 + a2b0 + a3b1
a0b3 + a1b2 − a2b1 + a3b0


T

(4)

A three dimensional vector can be rotated by a quaternion using the relationship de-
scribed in equation (5) [2]. Av and Bv are the same vector described in frame A and frame
B respectively where each vector contains a 0 inserted as the first element to make them 4
element row vectors.

Bv = A
Bq̂ ⊗ Av ⊗ A

Bq̂
∗ (5)

The orientation described by A
Bq̂ can be represented as the rotation matrix A

BR defined
by equation (6) [2].

A
BR =

2q20 − 1 + 2q21 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) 2q20 − 1 + 2q22 2(q2q3 + q0q1)
2(q1q3 + q0q2) 2(q2q3 − q0q1) 2q20 − 1 + 2q23

 (6)

A quaternion may be obtain from a rotation matrix using the inverse of the relationships
defined in (6); however, in some practical applications an available rotation matrix may not
be orthogonal and so a more robust method is prefered. Bar-Itzhack provides a method [3]
to extract the optimal, ‘best fit’ quaternion from an imprecise and non-orthogonal rotation
matrix. The method requires the construction of the symmetric 4 by 4 matrix K (equation
(7)) where rmn corresponds to the element of the mth row and nth column of ABR. The optimal
quaternion, A

Bq̂, is found as the normalised Eigen vector corresponding to the maximum
Eigen value of K. This is defined by equation (8) where v0 to v3 define the elements of the
normalised Eigen vector.

K =
1

3


r11 − r22 − r33 r21 + r12 r31 + r13 r23 − r32
r21 + r12 r22 − r11 − r33 r32 + r23 r31 − r13
r31 + r13 r32 + r23 r33 − r11 − r22 r12 − r21
r23 − r32 r31 − r13 r12 − r21 r11 + r22 + r33

 (7)
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A
Bq̂ =

[
v3 v0 v1 v2

]
(8)

The ZYX Euler angles φ, θ and ψ describe an orientation of frame B achieved by the
sequential rotations, from alignment with frame A, of ψ around ẑB, θ around ŷB, and φ
around x̂B. This Euler angle representation of ABq̂ can be calculated [4] using equations (9)
to (11).

φ = atan2
(
2(q2q3 − q0q1), 2q20 − 1 + 2q23

)
(9)

θ = −arctan

(
2(q1q3 + q0q2)√

1− (2q1q3 + 2q0q2)2

)
(10)

ψ = atan2
(
2(q1q2 − q0q3), 2q20 − 1 + 2q21

)
(11)
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